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Chapter 2

Normed Spaces

2.1 Definition of a normed space

Recall that by a vector space over an algebraic field F we understand a

nonempty set X equipped with two operations:

1. (x, y) −→ x+ y from X ×X into X, (addition).

2. (λ, x) −→ λx from F×X into X, (scalar multiplication).

Elements of the vector space X are called vectors, elements of the field

F are called scalars (or sometimes numbers). Here we consider only real

vector spaces with F = R. A norm on a vector space is function which

roughly speaking has a meaning of the length of a vector. More precisely,

we have the following definition.

Definition 2.1.1. (Normed space). Let X be a vector space. A norm on

X is a function ‖·‖ : X −→ R, which satisfy the following properties:

(N1) ‖x‖ = 0 if and only if x = 0.

(N2) ‖λx‖ = |λ|‖x‖ for all x ∈ X and λ ∈ R. (scalar multiplication)

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X. (Triangle inequality)
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A normed space is a pair (X, ‖·‖), where X is a vector space and ‖·‖ is a

normed on X.

Example 2.1.2. (Positivity of the norm). Let (X, ‖·‖) be a normed space.

Prove that

(N1′) ‖x‖ ≥ 0 ∀x ∈ X. (2.1)

Example

(R, |·|) is normed space.

Theorem 2.1.3. Let (X, ‖·‖) be a normed space. Then

d(x, y) := ‖x− y‖ (2.2)

defines a metric on X, i.e. (X, d) is a metric space.

Remark 2.1.4. Theorem 2.1.3 states that every normed space is also a

metric space with the induced metric. However, not every metric space can

be made into a normed space. For example, the metric space of all positive

rational numbers Q+ with the metric d(x, y) = |log(xy )| from Example 1.1.4

is not a normed space, simply because Q+ is not a vector space.

2.2 Vector space RN

The space RN of N-vectors of real numbers, defined in Example 1.1.6 is a

vector space. The number N is called the dimension of the space RN . For

vectors x, y ∈ RN and scalar λ ∈ R, the addition and scalar multiplication

are defined as follows:

x+ y = (x1 + y1, x2 + y2, · · · , xN + yN)

λx = (λx1, λx2, · · · , λxN)
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Proposition 2.2.1. (The Cauchy-Schwarz inequality). For any x, y ∈ RN ,

|x · y| ≤ ‖x‖‖y‖. (2.3)

Example 2.2.2. (Euclidean norm on RN). The function

‖x‖2 =
√
|x1|2 + · · ·+ |xN |2 =

√√√√ N∑
i=1

|xi|2

defines the Euclidean norm on RN .

Corollary 2.2.3. (RN , d2) is metric space

Example 2.2.4. (Taxi-cab and ∞ norm on RN). Let RN be the N-

dimensional vector space as before. We define the taxi-cab norm ‖·‖1 :

RN −→ R by

‖x‖1 = |x1|+ · · ·+ |xN |

and infinity norm ‖·‖∞ : RN −→ R by

‖x‖∞ = max{|x1|, · · · , |xN |}

Example

Explain why ‖x‖ = min{x1, x2} does not define a norm on R2.

2.3 Vector space of continuous functions C([a, b])

Let C([a, b]) be the vector space of all continuous functions on the closed

interval [a, b]. For functions f, g ∈ C([a, b]) and scalar λ ∈ R, the addition

and scalar multiplication are defined in a natural pointwise way:

(f + g)(x) = f(x) + g(x)
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(λf)(x) = λf(x)

Example 2.3.1. (Uniform convergence norm on C([a, b])). The function

‖f‖∞ = max
x∈[a,b]

|f(x)|

is a norm on C([a, b]), known as a uniform convergence norm, or ∞-norm

on C([a, b]).

12


	Metric space
	Definition and Examples

	Normed Spaces
	Definition of a normed space
	Vector space RN
	Vector space of continuous functions C([a,b]) 

	Topology of metric spaces
	Open and closed ball

	Convergence in metric spaces
	Definition of a convergent sequence
	Convergence of sequences in RN
	Cauchy Sequences
	Compact sets

	Continuous mappings on metric spaces
	Definition and properties of a continuous mapping
	Continuity and compactness
	Further properties of continuous mappings
	Linear mappings in normed spaces

	Continuity
	Uniform convergence
	Uniform convergence of sequence of functions
	Uniform convergence of series of functions.

	Ordinary Differential Equations Theory
	Ordinary Differential Equations Theory


